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Abstract
Density estimation methods are often regarded as unsuit-
able for anomaly detection in high-dimensional data due to
the difficulty of estimating multivariate probability distribu-
tions. Instead, the scores from popular distance- and local-
density-based methods, such as local outlier factor (LOF),
are used as surrogates for probability densities. We question
this infeasibility assumption and explore a family of simple
statistically-based density estimates constructed by combin-
ing a probabilistic classifier with a naive density estimate.
Across a number of semi-supervised and unsupervised prob-
lems formed from real-world data sets, we show that these
methods are competitive with LOF and that even simple
density estimates that assume attribute independence can
perform strongly. We show that these density estimation
methods scale well to data with high dimensionality and
that they are robust to the problem of irrelevant attributes
that plagues methods based on local estimates.

1 Introduction

Anomaly detection, also known as outlier or novelty
detection, is an active area of research with applica-
tions such as detecting fraud, errors, and unexpected
categories in numerous domains [7, 16]. Automated ap-
proaches to anomaly detection identify data instances
with characteristics that appear inconsistent with the
vast majority of the instances and thus are likely to
have been generated by a different underlying process.

In the literature on anomaly detection, two chal-
lenges often arise. The first concerns merely agreeing
on a task definition. This paper addresses the semi-
supervised and unsupervised versions of the task [16],
in which no labeled examples of anomalies are pro-
vided and the training data is assumed to be, respec-
tively, either entirely normal (“positive” data), or nor-
mal mixed with a small number of unlabeled anomalies.
The algorithms we discuss build a model of the training
data, treating it as all positive, and then assign anomaly
scores to points in a test data set. Our task can also be
described as one-class classification [21], which is equiv-
alent to semi-supervised anomaly detection without the
restriction that the normal class be the most prevalent.
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In the absence of labeled anomalies, a common task
definition, which we adopt here, is to rank test points
by their density according to a model of the positives,
with the lowest density points being considered the most
anomalous [5]. This definition puts the focus on globally
modeling the positive data, setting aside concerns about
whether the predicted anomalies are truly interesting to
a domain specialist [25], how a point’s density compares
to that of its local neighborhood [6, 29], and what
fraction of points to flag as anomalous [17,26].

The second challenge concerns the behavior of
anomaly detection methods when faced with high-
dimensional data, a topic of great interest recently
[2, 14, 18, 19, 22, 33]. Most distance- and density-based
outlier detection methods for multivariate data (e.g.,
DB-Outlier [17], local outlier factor [6]) rely on nearest-
neighbor and distance computations, and they face dif-
ficulties when dimensionality increases. Zimek et al. [33]
recently demonstrated that a key problem in high
dimensions is irrelevant (or “noise”) attributes, at-
tributes that obscure the outlier properties of otherwise-
anomalous points. Most approaches developed for high-
dimensional data address this problem by working in
lower-dimensional subspaces: they choose one or more
low-dimensional projections of the data, identify outliers
in the subspaces, and aggregate the results [2,14,19,22].

In this paper, we show that relatively simple and ef-
ficient methods can estimate the global probability den-
sity function, rather than approximating its properties
locally. Directly estimating the probability density al-
leviates both of the above challenges. First, it enables
a clear-cut task definition: the degree to which a point
is an outlier is inversely proportional to its probability
density. Second, this definition implies that when at-
tributes are added to a data set, the global density func-
tion changes, so the ground truth ranking of points is
reordered. As a special case of interest, when the new at-
tributes are uniformly distributed, the global density is
only multiplied by a constant, so—provided the density
is modeled accurately—the ranking does not change.

The method this paper evaluates, which we refer
to as classifier-adjusted density estimation (CADE), di-
rectly estimates the joint density of a data set. CADE
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constructs an initial density estimate, generates arti-
ficial anomalies from that distribution, and then uses
those artificial anomalies to train a probabilistic clas-
sifier that corrects the initial distribution. Although
CADE has been described previously [12, 13], its prop-
erties and performance have not been widely under-
stood, and it has not been frequently used or compared
to more recently developed alternatives. Ironically, in
many cases this method has not even been recognized
as performing density estimation. The main contribu-
tions of this paper are to:

• Identify the most effective combinations of CADE
components. Specifically, we find that k-nearest
neighbors and random forest classifiers work well
across a number of initial density estimates. We
confirm the surprising observation by Hempstalk et
al. [13] that simple density estimates can perform
strongly even when used alone, and we refute their
conjecture that uniform initial density estimators
would work poorly in high dimensions.

• Compare the performance of CADE and state-of-
the-art anomaly detection algorithms in the pres-
ence of irrelevant attributes. Specifically, we show
that as dimensionality increases, CADE is much
more robust to irrelevant attributes than two local
outlier factor (LOF) methods.

2 Classifier-Adjusted Density Estimation

CADE uses artificially generated data to transform a
density estimation problem into a supervised learning
problem. Hastie et al. [12] presented this idea more
than a decade ago with the still-appropriate remark
that although it “seems to have been part of the
statistics folklore for some time, it does not appear to
have had much impact despite its potential to bring
well-developed supervised learning methodology to bear
on unsupervised learning problems.” We adopt the
notation and derivation of Hempstalk et al. [13].

2.1 Derivation To use this technique, we must se-
lect two tools. First, we need an initial density esti-
mation procedure for the positive data, T . This initial
(or “naive”) estimate need not be high quality; as ex-
periments will show, a bounded uniform density or a
single Gaussian can perform quite well. The only re-
quirement is to be able to generate data from this dis-
tribution. We refer to the initial density as A, having
probability density function P (X|A). Second, we need a
classifier—specifically, a conditional probability estima-
tor that outputs class probability estimates (as opposed
to binary predictions). The classifier will be trained to
distinguish the positive data, T , from samples gener-

ated by the initial density estimate, A. We call these
samples artificial anomalies or artificial negatives, cau-
tioning that those terms can be misleading since the
artificial points may closely resemble the positives.

Given a test example, the classifier outputs a prob-
ability, P (C = T |X) = 1 − P (C = A|X), that the
example comes from class T . CADE uses this probabil-
ity estimate together with the initial density function
P (X|A) to compute a probability density for the posi-
tive class, P (X|T ).

To derive that computation, first we rewrite the
classifier’s estimate using Bayes’ theorem, then we ex-
pand the denominator to express that X is from one of
the two classes:

P (C = T |X) =
P (X|T )P (C = T )

P (X)

=
P (X|T )P (C = T )

P (X|T )P (C = T ) + P (X|A)P (C = A)

Next, we multiply out the terms and solve for P (X|T ):

P (X|T )P (C = T )P (C = T |X)
+ P (X|A)P (C = A)P (C = T |X)

= P (X|T )P (C = T )

(2.1)

P (X|T ) =
P (X|A)P (C = A)P (C = T |X)

P (C = T )(1− P (C = T |X))

The left side of Equation (2.1) is the probability
density estimate CADE produces for any desired point
X. The right side consists of three components: the
initial density estimate P (X|A), a (constant) prior odds
term P (C=A)

P (C=T ) describing the class ratio in the classifier’s

training data, and an odds term P (C=T |X)
1−P (C=T |X) formed

from the classifier’s prediction. Throughout this paper,
we train the classifier with equal-sized classes, so the
prior odds term can be ignored.

Intuitively, the term from the classifier, which can
range from 0 to∞, can be seen as an adjustment factor
to the initial density P (X|A). The classifier has been
trained to distinguish the true positives from the initial
density (the artificial negatives). At one extreme, if
the initial density estimate were perfect—if P (X|A) =
P (X|T ) everywhere—then the classifier would not be
able to distinguish A from T and would (ideally) predict
P (C = T |X) = 0.5 everywhere. In that case, Eq. (2.1)
simplifies to P (X|T ) = P (X|A), the initial density.
At the other extreme, if the initial density estimate is
uniform—if P (X|A) = b for some constant b, over the
range of all query points X—then Eq. (2.1) reduces to
P (X|T ) ∝ P (C = T |X). In that case, the final ranking
is equivalent to the ranking from the classifier.
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This paper builds on the work of Hempstalk et
al. [13] and extends it in several ways. First, while
Hempstalk et al. use Gaussians and mixtures of Gaus-
sians for the initial density estimate, arguing that a uni-
form density would work poorly in high dimensions, we
find good performance across a spectrum of initial den-
sities from simple (uniform) to complex (kernel density
estimate or Bayes net). Second, we explore a number
of classifiers beyond the bagged decision trees (random
forests) they use. Third, while Hempstalk et al. compare
CADE to one-class SVMs [26], we show it is similarly
competitive with LOF [6]. Finally, we show that CADE
scales to high dimensions and large data sets, perform-
ing well in situations where other methods degrade.

2.2 Use of Artificial Anomalies Several previ-
ously described anomaly detection methods also use ar-
tificial anomalies as a negative class to train a classifier.
These methods ignore the distribution of the artificial
anomalies, either using the classifier’s prediction alone
[8, 10, 31] or wrapping it in a more complex procedure
[1]. Using CADE (Eq. (2.1)) is probabilistically well-
founded, but it is worth understanding what happens
when using the classifier alone. Two questions arise: (1)
how should the artificial anomalies be distributed, and
(2) when will the test data be similar enough to the
training data for the classifier to generalize correctly?

Assertions for where to put the artificial anoma-
lies have ranged from covering the non-positive space
as thoroughly as possible [10], to near the positive data
but concentrated in its sparse regions [8], to matching
the positives as closely as possible [13]. As an illustra-
tion, suppose we use a uniform distribution of artifi-
cial anomalies, defined as constant over some range. We
train a classifier and then encounter a test point far out-
side this range. The classifier will make a prediction if
asked, but since the point is unlike the training data,
that prediction is unreliable. (Precisely such a concern
in a supervised anomaly detection problem was the mo-
tivation for work by Bishop [5].) It would be prefer-
able to directly recognize such a point and mark it as
anomalous on the basis of being far from the training
data. We could manually add handling for such cases,
but Eq. (2.1) automatically provides this property: the
classifier’s prediction is multiplied by a constant if the
new point is within the range of the artificial anomalies
and by zero1 outside that range, so points far from the
positives are assigned the lowest density.

The same situation occurs with non-uniform initial
densities: test points may be located outside the regions

1Multiplying probabilities by zero causes information to be
lost, so we actually use a small positive value.
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Figure 1: AUC improvement from adding density esti-
mates (DE) to classifier predictions.

where the classifier was trained. By multiplying the
classifier’s prediction by P (X|A), CADE produces low
density estimates in places where artificial anomalies,
and presumably training data itself, are absent.

It is striking how much improvement Eq. (2.1) pro-
vides over ranking by the classifier’s output alone. Fig. 1
shows the average performance with and without den-
sity estimates, in the semi-supervised setting (see Sec-
tions 3 and 4). The AUCs are calculated in the same way
as the overall averages of Table 2. On average, the den-
sity estimate improves upon the classifier alone for all
15 initial density estimate and classifier combinations.

3 Data, Tasks and Evaluation

We apply CADE to an assortment of real (Table 1) and
synthetic data sets. We transform 15 data sets from the
UCI repository [3] into anomaly detection problems by
selecting certain class labels to be the positive data and
treating the others as the negative, or anomalous, data.
A final data set, Employee, bears special mention. It
was collected as part of the DARPA ADAMS program
and intended as a test bed for anomaly detection—
namely, detection of insider threats to an organization’s
information systems [27]. It describes the online activ-
ities of ∼5500 employees at a large business. The data
were collected using a commercial tool that monitors
daily computer usage, recording events such as log-
ons, websites visited, files printed and external devices
connected. Every month, a small number of syntheti-
cally constructed “malicious user activities” were added
to the data. There are 6 month-long data sets, each
containing 88 numeric attributes and over 100,000 in-
stances. The instances summarize (through normalized
counts and ratios) the events recorded per user per day,
and the class label indicates user-days in which mali-
cious activities took place.
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Table 1:
Characteristics of semi-supervised / one-class classification data sets

Name
Total
instances

Number of attributes Classes in
raw data

Task instances
in experiments

Smallerb

class size, as
% of total

Avg.
runtime per
fold (sec.)Numeric Nominal Sa Ma

Adult 48,841 6 8 2 2 – 24% 56.1
Ann-thyroid 3,772 15 6 3 3 3 2–92% 17.6
Bands 540 21 14 2 2 – 35% 5.6
Breast cancer 699 9 – 2 2 – 35% 8.0
Contraceptive 1,473 2 7 3 3 3 23–43% 11.1
Credit 690 6 9 2 2 – 46% 6.9
Ecoli 336 7 – 8 2 2 23–42% 5.7
Glass 214 9 – 6 3 3 13–36% 6.9
Ionosphere 351 34 – 2 2 – 36% 7.2
Musk 6,598 166 – 2 2 – 14% 28.1
Pendigits 10,992 16 – 10 10 10 10% 20.6
Segment 2,310 19 – 7 7 7 14% 11.5
Yeast 1,484 8 – 10 4 4 11–31% 7.9

Characteristics of unsupervised anomaly detection data sets

Name Instances Numeric
attrs.

Nominal
attrs.

Classes in
raw data

S M Smaller
class size

Avg. run-
time (sec.)

Coil 4,000 82 2 2 2 – 1.3% 21.0
Shuttlec 58,000 9 – 7 5 – 0.02–7% 104.3
Employee
(6 versions)

108,215–
133,770

88 – 2 6 – 0.006–
0.08%

368.1

a S = number of binary class divisions formed using a single class as the positives; M = number of binary class
divisions formed using the union of multiple classes as the positives. b Or range of raw class sizes, when S > 2.
c With Shuttle, we reproduce the setup of Lazarevic and Kumar [19], in which class 1 is always used as positive,
and each of 2, 3, 5, 6, and 7 in turn are used as negatives.

The largest set of experiments takes place in a semi-
supervised, or one-class classification, setting. From 13
of the UCI data sets, we create a total of 76 class
divisions into positive and anomalous data: first, each
class label is used as a single positive class, with the
union of the other classes labeled as anomalies; next,
each class label is used as a single anomalous class, with
the union of the other classes labeled as positives2. In
this one-class setting, we run 10-fold cross validation: in
each of 10 runs, 90% of the data is used for training and
10% for testing. At training time, only positive instances
from the training set are seen, and an equal number
of artificial anomalies are created. At evaluation time,
all of the test instances, both positive and negative,
are scored. Thus the class proportions in the test data
match the proportions in the full data set. These vary
widely, as shown in Table 1.

In many real-world settings, such as with Employee,
it is unrealistic to assume that a clean set of positives is

2We discard class divisions having fewer than 50 instances in
either the positives or the negatives because, when used with cross
validation, the test sets are often too small to be meaningful.

available at training time. We address this scenario with
a separate set of experiments in an unsupervised setting.
In this setting, we sample 10,000 unlabeled instances as
training data3, and at test time, we score all instances.
This setup is used for Employee and the remaining 2
UCI data sets.

Although the outputs of CADE are probability
density estimates, we do not examine the individual
scores, only their ranking. This ranking is compared
to the true class labels using area under the ROC
curve (AUC), which varies between 0.5 (random) and
1 (perfect). This measure is chosen because it reflects
how well the ranking separates the positives from the
negatives and because it does not vary as a function of
class proportions [9].

4 Choosing Components of CADE

4.1 Methods Implemented We use four types of
initial density estimates for numeric data: uniform,
Gaussian, kernel density estimate, and Bayes net. The

3For runtime reasons specific to this implementation, we use
only 2,000 with the Bayes net.
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uniform density is defined as a constant over the range
of the training data. The Gaussian is a single Gaus-
sian with diagonal covariance, or equivalently, a prod-
uct of independent Gaussians, one distribution fit to
each dimension. The kernel density estimator (KDE,
also known as a Parzen-Rosenblatt window) [24] is a
flexible, nonparametric alternative we use in a similar
way: fit a univariate KDE to each dimension indepen-
dently, and define the joint density to be the product
of the independent marginal densities. The kernel it-
self is Gaussian, and the bandwidth in each dimension
is chosen using a plug-in selector. Since the first three
density estimates cannot capture dependencies among
attributes, we compare them to a full joint model, a
Bayesian network learned over the training data. We
expect this alternative to be more powerful but com-
putationally expensive. Further implementation details
and recommendations are available in Sections 8–94.

As classifiers within CADE, we experiment with
five methods available in Weka [11]: k-nearest neighbors
(KNN), random forest (RF), naive Bayes (NB), logistic
regression (LR), and decision trees (Tree—alternatively
CART or C4.5). We also use the density estimates alone,
unadjusted by classifiers. Most results are reported only
on the best-performing classifiers, KNN and RF. Among
the others, Tree always performs worse than random
forest, and naive Bayes and logistic regression are inef-
fective if used with KDEs, as Section 9.1 explains.

4.2 Performance on Real Data The top portion
of Table 2 summarizes the results of one-class classifi-
cation. Each method is run with 10-fold cross valida-
tion across a total of 76 class divisions formed from the
13 data sets. Each entry represents the average AUC
across the class divisions of a single data set. For data
sets with more than two class labels, we subdivide the
class divisions into single-class (S) versus multi-class
(M) positives, since the multi-class positives are more
complex distributions to learn and generally yield lower
AUC. The overall average for each method is calculated
by averaging all rows. The column labeled “Supervised
RF” shows the performance of a random forest that is
trained using fully labeled positives and negatives. This
value should be an indicator of problem difficulty and
an approximate ceiling to the performance of CADE.

We find considerable variation among data sets and
class divisions regarding the relative performance of the
CADE versions. Some versions, such as Uniform + RF
and KDE, are consistently among the best. It is interest-
ing to note that using more complex density estimates

4Sections 8–10 are provided as Supplemental Materials at
http://kdl.cs.umass.edu/papers/friedland-et-al-sdm2014-

supplemental.pdf.

(KDE, Bayes net) does not consistently improve on us-
ing a uniform density estimate. One surprising result is
how well the unadjusted density estimates can perform.
KDE is frequently one of the highest performers, and
even an unadjusted uniform density estimate (which es-
sentially draws a box around the positive data and labels
anything outside the box as anomalous) can give high
AUC in many cases. While no method is a top performer
for all data sets, Uniform + RF and KDE + RF seem
to be practical, simple choices when selecting which ver-
sion of CADE to use.

In the unsupervised setup (Table 2 bottom), there
is again considerable variation among CADE versions.
The initial density estimates again perform well, often
just as well as their classifier-adjusted counterparts. In
these experiments, the CADE versions that use Bayes
net are frequently among the strongest performers.
Bayes net’s ability to learn a full joint model may give
it this edge, although of course it is also the most
computationally expensive.

4.3 Effect of Correlation It is counterintuitive that
initial density estimates that do not model attribute
dependence would be as effective as we have seen. We
expect that adjusting the density estimates to capture
dependence should be beneficial, particularly when the
distributions do have high correlation. To test this
hypothesis, we compare the performance of full CADE
to that of an unadjusted density while varying the
correlation of synthetic data.

When using synthetic data, we can compute the
ground truth ranking of any set of test instances with
respect to the probability density function of the pos-
itive data. In this experiment, in each trial, we ran-
domly generate a different five-dimensional Gaussian,
generate positive data from it, and run CADE to esti-
mate its distribution. Using a test set of points drawn
from the same Gaussian, we compute the points’ CADE-
estimated densities and their true densities. We compare
the two rankings using Spearman’s rank correlation co-
efficient (also known as Spearman’s ρ), a nonparametric
measure of correlation that ranges from -1 to 1. We have
not previously seen Spearman’s rank correlation used to
evaluate anomaly detection, but we recommend it as an
objective measure that can be used with any test set
whenever the true distribution is known.

Fig. 2 shows the results of 400 such trials. To
measure the dependence in the data, we compute the
average absolute value of the off-diagonal entries from
the Gaussian’s correlation matrix, and plot this along
the x axis. We can see that, as the correlation increases,
the performance gap between adjusted and unadjusted
KDE widens. A similar effect is observed for other
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Table 2:
Semi-supervised / One-class classification results (Each entry: AUC averaged across cross-validation folds and class divisions)

Name
Supervised
RF

Uniform Gaussian KDE Bayes Net LOF
none KNN RF none KNN RF none KNN RF none KNN RF LOF Bagged

Adult (S) 0.673 0.515 b 0.637 0.673 0.700a 0.695 0.699 0.698 0.690 0.689 0.658 0.663 0.657 0.520 0.544
Ann-thyroid S 0.998 0.851 0.877 0.979 0.812 0.795 0.844 0.951 0.950 0.953 0.763 0.762 0.862 0.765 0.767
Ann-thyroid M 0.998 0.729 0.778 0.943 0.693 0.681 0.793 0.842 0.841 0.844 0.675 0.680 0.859 0.671 0.681
Bands (S) 0.768 0.559 0.618 0.623 0.599 0.601 0.609 0.623 0.623 0.626 0.553 0.553 0.557 0.570 0.556
Breast cancer (S) 0.993 0.689 0.940 0.895 0.982 0.982 0.978 0.980 0.980 0.977 0.918 0.918 0.908 0.943 0.820
Contraceptive S 0.701 0.514 0.554 0.561 0.558 0.553 0.556 0.583 0.577 0.578 0.554 0.558 0.581 0.508 0.501
Contraceptive M 0.702 0.500 0.509 0.522 0.511 0.505 0.512 0.529 0.521 0.524 0.506 0.510 0.526 0.513 0.505
Credit (S) 0.932 0.520 0.819 0.715 0.792 0.797 0.784 0.692 0.695 0.693 0.773 0.774 0.757 0.796 0.608
Ecoli S 0.975 0.849 0.915 0.929 0.943 0.942 0.945 0.935 0.935 0.935 0.935 0.934 0.935 0.932 0.939
Ecoli M 0.976 0.583 0.819 0.658 0.782 0.800 0.789 0.846 0.852 0.867 0.835 0.845 0.838 0.841 0.846
Glass S 0.930 0.699 0.744 0.734 0.734 0.740 0.744 0.751 0.753 0.756 0.767 0.768 0.767 0.777 0.770
Glass M 0.923 0.519 0.585 0.620 0.597 0.603 0.593 0.616 0.617 0.624 0.605 0.613 0.610 0.691 0.661
Ionosphere 0.968 0.724 0.610 0.839 0.615 0.616 0.617 0.835 0.835 0.836 0.614 0.616 0.615 0.597 0.610
Musk 0.992 0.705 0.837 0.796 0.593 0.592 0.604 0.810 0.809 0.813 0.657 0.664 0.665 0.882 0.873
Pendigits S 1.000 0.813 0.979 0.985 0.953 0.973 0.969 0.962 0.973 0.974 0.988 0.988 0.988 0.996 0.996
Pendigits M 1.000 0.500 0.907 0.848 0.613 0.858 0.702 0.668 0.875 0.805 0.742 0.848 0.790 0.983 0.976
Segment S 0.999 0.948 0.959 0.970 0.944 0.948 0.949 0.959 0.961 0.961 0.972 0.973 0.973 0.974 0.973
Segment M 0.999 0.648 0.891 0.775 0.594 0.747 0.633 0.758 0.834 0.799 0.712 0.759 0.746 0.909 0.922
Yeast S 0.865 0.638 0.725 0.720 0.754 0.765 0.752 0.725 0.729 0.729 0.754 0.755 0.750 0.741 0.744
Yeast M 0.866 0.505 0.582 0.557 0.554 0.560 0.552 0.530 0.550 0.556 0.574 0.572 0.573 0.629 0.620

Average S 0.907 0.694 0.786 0.801 0.768 0.769 0.773 0.808 0.808 0.809 0.762 0.763 0.770 0.769 0.746
Average M 0.923 0.569 0.724 0.703 0.621 0.679 0.653 0.684 0.727 0.717 0.664 0.690 0.706 0.748 0.745

Overall Average 0.913 0.650 0.764 0.767 0.716 0.738 0.731 0.765 0.780 0.777 0.728 0.738 0.748 0.762 0.746

Unsupervised results (Each entry: AUC averaged across 10 runs)

Coil 0.500 c 0.843 0.940 0.909 0.906 0.913 0.811 0.830 0.809 0.910 0.910 0.913 0.805 0.825
Shuttle (1 vs. 2) 0.500 0.984 0.998 0.853 0.963 0.962 0.978 0.990 0.991 0.977 0.982 0.994 0.986 0.993
Shuttle (1 vs. 3) 0.500 0.919 0.996 0.936 0.868 0.977 0.967 0.884 0.976 0.967 0.960 0.991 0.957 0.960
Shuttle (1 vs. 5) 0.500 0.848 0.930 0.998 0.956 0.998 0.986 0.556 0.980 0.985 0.984 0.985 0.497 0.450
Shuttle (1 vs. 6) 0.500 1.000 1.000 1.000 1.000 1.000 0.997 0.998 0.998 1.000 1.000 1.000 0.998 0.998
Shuttle (1 vs. 7) 0.500 1.000 1.000 0.999 0.999 0.999 0.990 0.985 0.993 0.999 0.999 0.999 0.999 0.999
Employee Sep 0.500 0.871 0.959 0.927 0.926 0.930 0.960 0.961 0.961 0.923 0.924 0.927 0.592 0.588
Employee Oct 0.500 0.870 0.978 0.938 0.938 0.941 0.973 0.973 0.973 0.940 0.940 0.943 0.651 0.647
Employee Nov 0.500 0.753 0.675 0.708 0.709 0.708 0.727 0.729 0.730 0.761 0.759 0.761 0.648 0.625
Employee Dec 0.500 0.790 0.820 0.778 0.778 0.780 0.820 0.819 0.821 0.806 0.808 0.809 0.561 0.549
Employee Jan 0.500 0.764 0.701 0.682 0.689 0.688 0.664 0.667 0.667 0.803 0.805 0.800 0.554 0.541
Employee Feb 0.500 0.721 0.483 0.582 0.583 0.580 0.556 0.561 0.561 0.733 0.735 0.729 0.537 0.526

Average 0.500 0.860 0.873 0.859 0.860 0.873 0.869 0.829 0.872 0.900 0.900 0.904 0.732 0.725
a For each data set, the highest AUC is reported in bold, as are all scores within 0.01 of it. b Italics indicate methods that perform significantly worse
than the best for each data set. Statistical significance is determined by performing paired t-tests between the 10 runs of a single class division using
α = 0.001. For the cross-validated results, a method is italicized if it is significantly worse than the highest performer in a majority of that data set’s
class divisions and is never significantly better. c The consistent 0.5 AUC for Uniform is a result of the unsupervised setup: here, the range of the
uniform distribution is determined from the entire data set, so no test instance is ever outside that range.
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Figure 2: Adjusted and unadjusted KDE performance
as a function of correlation. The lines are the locally
weighted regression lines of the points.

naive density estimates and classifiers. This gap affirms
the contribution of the classifier when attributes are
correlated.

5 Scalability to High Dimensions and Large
Data

One of the primary benefits of estimating a global prob-
ability density is the sensible behavior as dimension-
ality increases. To show that CADE’s density estima-
tion is a viable solution in high dimensions, we com-
pare it to two popular outlier detection methods, show-
ing that they perform comparably in UCI but that
CADE has an advantage in synthetic and in some of
the highest-dimensional data. As comparison methods,
we use LOF [6] (available in Weka) and bagged LOF
[19]. LOF is a popular anomaly detection method for
multi-dimensional data, and it has spurred many vari-
ants. It computes a local density estimate by essentially
comparing the size of a point’s neighborhood to those
of its neighbors [32].

As Zimek et al. discuss, most distance- and density-
based methods are challenged if there are dimensions in
which a point does not look like an outlier [33]. These
are described as “irrelevant” attributes, of which the
simplest possible are those with uniform distributions.
Bagged LOF is an ensemble-style method that addresses
this challenge by detecting outliers that only become
apparent in subspaces of their native high-dimensional
spaces. It runs multiple iterations of LOF, each with
a randomly chosen subset of attributes, and then, for
each instance, aggregates its scores from across the runs.
Bagged LOF has been shown to be more resistant than
LOF to irrelevant attributes, but only when the number
of irrelevant attributes is low [19].

CADE is competitive with the LOF methods in the

semi-supervised experiments of Table 2. Each of LOF
and bagged LOF wins on more data sets than any single
version of CADE, but there are also data sets where the
LOF methods are far below the best performer. In the
data sets run in unsupervised mode, CADE is stronger:
several versions of CADE (Uniform + RF, KDE + RF,
Bayes net, Bayes net + RF) outperform LOF on all
but one or two data sets. On Coil and Employee, both
with over 80 attributes, LOF is substantially below the
maximum.

5.1 Robustness to Noise Attributes To test ro-
bustness to irrelevant attributes, we generate synthetic
data with varying numbers of uniform attributes added
on. In this experiment, the positive data is a mixture
of three five-dimensional Gaussians with means and co-
variance matrices randomly sampled at each trial. In
addition to the five informative attributes, between 0
and 80 uniformly sampled attributes are added. At test
time, the instances are drawn from the same distribu-
tion as the positives5, and Spearman’s ρ is calculated
between the true and the estimated rankings of densi-
ties. Figs. 3 and 4 show the (smoothed) average perfor-
mance and 95% confidence intervals, across 20 trials per
setting, for most versions of CADE and LOF.

While LOF and bagged LOF perform well initially,
as we add uniform noise attributes, their performance
drops off dramatically. Uniform + KNN has a rapid
decline similar to LOF’s. Some versions of CADE,
however, do not experience the same drop-off. The top
performers, Uniform + RF and KDE + RF, decline
only gradually with noise attributes. As Fig. 4 shows,
as noise attributes are added, the effect of the classifier
drops off and the performance converges to that of
the plain density estimate. Prior to that convergence,
random forest outperforms k-nearest neighbors, and
both outperform the density estimate alone.

5.2 Scalability CADE scales well to large numbers
of instances and attributes. Table 1 displays the average
number of seconds for a single run using KDE +
RF6. On the Employee data sets, with 88 attributes
and over 100,000 instances, CADE runs in under 7
minutes. The computational complexity depends on the
implementations of the components used. Our KDEs
use binning, which makes them in O(gmntrain) to learn
and O(gmntest) to apply, where m is the number of
attributes, g is the grid size and ntrain is the number of
training instances. Random forests with balanced trees

5See Section 10 for an alternative test set.
6Due to details of our implementation, these numbers exclude

the time to learn the KDE’s bandwidth (< 10 sec.) and to load
the data file.
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Figure 3: Performance as uniform noise attributes are
added to a distribution with five informative attributes.
LOF is similar to bagged LOF and is omitted for clarity.
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Figure 4: Same experiment as Fig. 3. Each group of three
lines represents a single density estimation method. Line
styles denote classifiers.

can be learned in O(t log(m)ntrain log(ntrain)) time,
where t is the number of trees and log(m) attributes are
considered at each split, and applied in O(log(ntest)).

6 Related Work

Recent research in anomaly detection has often over-
looked approaches for joint probability density esti-
mation. Although statistical outlier detection is well-
developed in the univariate case [4] and surveys have
described many multivariate techniques [7,16,20], there
seems to be a widespread assumption that estimat-
ing useful models of multivariate densities is infeasible.
Common wisdom holds that parametric models such as
Gaussians are unlikely to fit the data and that non-
parametric models—namely KDEs [24]—become im-
practical in high dimensions. According to this reason-
ing, with KDEs, either the training data become too

sparse, or the computational complexity (in naive imple-
mentations) gets too high [16, 20, 30]. Our KDE model
sidesteps these issues by independently combining a set
of one-dimensional KDEs (and combining the resulting
initial density estimate with a probabilistic classifier).

The algorithms LOF and bagged LOF are repre-
sentatives of what are called distance- and density-based
outlier detection methods. Other variations include DB-
Outlier [17], LOCI (local correlation integral) [23], and
COF (connectivity-based outlier factor) [28]. In high di-
mensions, these approaches usually involve projecting
the data into low-dimensional subspaces and perform-
ing traditional anomaly detection there. One of the ear-
liest such methods searches for subspaces which con-
tain unusually sparse cubes [2]. While bagged LOF cre-
ates random subspaces in which anomalies might be
detectable [19], other recent methods focus on choos-
ing useful subspaces [18, 22] and combining the sub-
space anomaly scores—potentially from spaces of dif-
ferent dimensionalities—in principled ways [14,22].

Other techniques commonly used for anomaly de-
tection come out of one-class classification. Two popu-
lar methods are support vector data description [30] and
one-class SVM [26]. A final related technique is that of
density ratio estimation [15]. Like CADE, this method
compares two densities, but instead of training data and
artificial anomalies, they are training data and test data.
Instead of comparing them by learning a classifier, it
applies techniques specialized for estimating ratios of
densities.

7 Conclusion

This paper shows how to use classifier-adjusted density
estimation to achieve good results at anomaly detection
tasks. Contrary to conventional expectations, we show
that density estimation can be a reasonable goal for
high-dimensional data, giving results competitive with
LOF over a large number of data sets and, unlike
LOF, performing robustly even when faced with 80
irrelevant attributes. We find that CADE can work well
with a variety of initial density estimate components
and classifiers and that, depending on the data set,
marginally independent density estimates can perform
strongly even before adjustment by a classifier.
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